Solution to Assignment 2

Supplementary Problems

1. Let S be the sector bounded by the straight line $y=\tan \theta x$, the positive x-axis and the circle $x^{2}+y^{2}=r^{2}$. Show that its area is given by $\theta r^{2} / 2$. To simply the calculation, you may assume $\theta \in(0, \pi / 2]$.
Solution. The line $y=\tan \alpha x$ and $x^{2}+y^{2}=r^{2}$ intersects at the point $(r \cos \alpha, r \sin \alpha)$. The sector S is described as

$$
S=\left\{(x, y):(\tan \alpha)^{-1} y \leq x \leq \sqrt{r^{2}-y^{2}}, 0 \leq y \leq r \sin \alpha\right\} .
$$

Therefore, its area is given by

$$
\begin{aligned}
\int_{0}^{r \sin \alpha} \int_{(\tan \alpha)^{-1} y}^{\sqrt{r^{2}-y^{2}}} 1 d x d y & =\int_{0}^{r \sin \alpha}\left(\sqrt{r^{2}-y^{2}}-\frac{1}{\tan \alpha} y\right) d y \\
& =\frac{1}{2} \alpha r^{2}+\frac{r^{2}}{4} \sin 2 \alpha-\frac{r^{2}}{4} \sin 2 \alpha \\
& =\frac{1}{2} \alpha r^{2}
\end{aligned}
$$

2. Let f and g be continuous on the region D. Deduce the inequality

$$
2 \iint_{D}|f g| d A \leq \alpha^{2} \iint_{D} f^{2} d A+\frac{1}{\alpha^{2}} \iint_{D} g^{2} d A,
$$

where α is a positive number. Hint: Use $\left(\alpha f(x) \pm \alpha^{-1} g(x)\right)^{2} \geq 0$.
Solution. We have $\left(\alpha f(x, y) \pm \alpha^{-1} g(x, y)\right)^{2} \geq 0$, that is,

$$
\alpha^{2} f^{2}(x, y)+\alpha^{-1} g^{2}(x, y) \geq 2|f(x, y) g(x, y)|
$$

Integrating this inequality over D to get

$$
\alpha^{2} \iint_{D} f^{2} d A+\alpha^{-2} \iint_{D} g^{2} d A \geq 2 \iint_{D}|f g| d A .
$$

Note that we have used linearity and positivity of the Riemann integral.
3. Setting as in (2), prove the Cauchy-Schwarz inequality:

$$
\iint_{D}|f g| d A \leq\left(\iint_{D} f^{2} d A\right)^{1 / 2}\left(\iint_{D} g^{2} d A\right)^{1 / 2}
$$

Solution. Choose

$$
\alpha^{2}=\frac{\left(\iint_{D} g^{2} d A\right)^{1 / 2}}{\left(\iint_{D} f^{2} d A\right)^{1 / 2}}
$$

4. Let f be a non-negative continuous function on D and p a positive number. Show that

$$
m \leq\left(\frac{1}{|D|} \iint_{D} f^{p} d A\right)^{1 / p} \leq M
$$

where m and M are respectively the minimum and maximum of f and $|D|$ is the area of D.

Solution. From $m^{p} \leq f(x, y)^{p} \leq M^{p}$, we integrate to get

$$
m^{p}|D|=\iint_{D} m^{p} d A \leq \iint_{D} f^{p} d A \leq=\iint_{D} M^{p} d A=M^{p}|D|,
$$

and the inequality follows.
Note. It shows $\left(|D|^{-1} \iint_{D} f^{p} d A\right)^{1 / p}$ can also be used to describe some kind of average. The cases $p=1,2$ are most common.

